Группа проектов Кипинфо
Реклама

Реклама

Химические сенсоры

К списку статей

Общие понятия

Определение термина "Химические сенсоры". Критерии отнесения аналитического устройства к химическим сенсорам: преобразователь информации, отсутствие пробоподготовки, квазинепрерывность измерения, время отклика, миниатюрность, автономность, низкая стоимость анализа. Основные виды химических и физических взаимодействий, используемые в химических сенсорах. Биосенсоры. Основные особенности биосенсоров как химических сенсоров. Типичные конструкции биосенсоров. Сенсорные анализаторы как новый класс аналитических приборов. Полисенсорные анализаторы. Интеллектуальные системы «электронный нос», «электронный язык».

Электрохимические сенсоры

Основные типы электрохимических сенсоров: потенциометрические (включая ионометрические), вольт-амперометрические, кулонометрические, кондуктометрические. Параметры электрохимических сенсоров и особенности их использования. Твердоэлектролитные сенсоры. Механизм проводимости в твердом электролите. Типы проводимости ( кислород-ионная, гидридионная, хлорионная, смешанная и т.д). Процессы переноса вещества на границах раздела фаз. Режимы работы сенсоров. Метрологические характеристики, области применения, примеры (диффузионный сенсор, лямба-сенсор и т.д).

Оптические химические сенсоры

Основные типы оптических химических сенсоров: спектрофотометрические, люминесцентные, атомно-эмиссионные. Использование волоконной оптики для химических сенсоров, их особенности.

Полупроводниковые сенсоры

Основные типы полупроводниковых сенсоров: химически чувствительные полевые транзисторы, сенсоры на основе систем металл-изолятор-полупроводник, диоды Шотки. Сенсоры проводимости на основе полупроводников (агломеративные, пленочные, полимерные, органополупроводниковые). Метрологические характеристики.

Термометрические химические сенсоры

Основные типы термометрических химических сенсоров: сенсоры, использующие теплопроводность среды; сенсоры, использующие теплоту химических реакций в чувствительном слое, каталитические сенсоры (пеллистор, пъезокаталитические сенсоры). Основные параметры сенсоров, особенности их применения.

Массочувствительные химические сенсоры

Основные типы сорбционных массочувствительных сенсоров: кварцевые резонаторы на объемных акустических волнах, резонаторы на поверхностных акустических волнах, линии задержки поверхностных акустических волн. Основные параметры массочувствительных химических сенсоров, выбор рабочей частоты. Особенности применения массочувствительных сенсоров.

Основные области применения химических сенсоров

Особенности использования химических сенсоров и сенсорных анализаторов, их преимущества и недостатки. Области применения: экологический контроль, контроль технологических процессов, контроль качества, медицина, сельское хозяйство, производство продовольствия.

ЧТО ТАКОЕ ХИМИЧЕСКИЕ СЕНСОРЫ

На протяжении едва ли не всей истории аналитической химии одна из самых важных ее задач состояла и состоит в том, чтобы устанавливать связи между составом и каким-либо легко измеряемым свойством и использовать выявленные закономерности, то есть эти связи, для разработки способов определения концентрации и соответствующих устройств. К этим устройствам относятся и датчики, или химические сенсоры, которые дают прямую информацию о химическом составе среды (раствора), в которую погружен датчик, без отбора анализируемой пробы и ее специальной подготовки. Термин "химический сенсор" появился сравнительно недавно. Успехи в смежных областях (физика твердого тела, микроэлектроника, микропроцессорная техника, материаловедение) привели к появлению нового направления в аналитической химии - химических сенсоров (ХС). Сенсорные анализаторы могут работать автономно, без вмешательства оператора, причем предполагается, что они связаны с системами накопления и автоматизированной обработки информации. Значение ХС и созданных на их основе анализаторов в контроле состояния среды обитания и охране здоровья человека трудно переоценить.

Принципы работы и устройство химических сенсоров

ХС состоит из химического селективного слоя датчика, дающего отклик на присутствие определяемого компонента и изменение его содержания, и физического преобразователя (трансдьюсера). Последний преобразует энергию, возникающую в ходе реакции селективного слоя с определяемым компонентом, в электрический или световой сигнал, который затем измеряется с помощью светочувствительного и / или электронного устройства. Этот сигнал и является аналитическим, поскольку дает прямую информацию о составе среды (раствора). ХС могут работать на принципах химических реакций, когда аналитический сигнал возникает вследствие химического взаимодействия определяемого компонента с чувствительным слоем, или на физических принципах, когда измеряется физический параметр (поглощение или отражение света, масса, проводимость). В первом случае чувствительный слой выполняет функцию химического преобразователя. Общая схема функционирования ХС изображена на рис. 1.

Для повышения избирательности на входном устройстве ХС (перед химически чувствительным слоем) могут размещаться мембраны, селективно пропускающие частицы определяемого компонента (ионообменные, диализные, гидрофобные и другие пленки). В этом случае определяемое вещество диффундирует через полупроницаемую мембрану к тонкому слою химического преобразователя, в котором формируется аналитический сигнал на компонент. На основе ХС конструируют сенсорные анализаторы - приборы, предназначенные для определения какого-либо вещества в заданном диапазоне его концентраций. Эти анализаторы могут иметь малые габариты (иногда приближающиеся к размерам калькулятора или авторучки). Поскольку в их конструкции отсутствуют детали, претерпевающие механический износ, устройства характеризуются достаточно длительным сроком эксплуатации (до года и более). Объединенные в батарею и подключенные к компьютеру, ХС способны обеспечить анализ сложных смесей и дать дифференцированную информацию о содержании каждого компонента. В сенсорных анализаторах встроенные микросхемы позволяют вводить поправки на изменение температуры, влажности, учитывать влияние других компонентов среды, проводить градуировку и настройку нулевого значения на шкале показаний.

Типы и конструкция химических сенсоров

В зависимости от характера отклика (первичного сигнала), возникающего в чувствительном слое ХС, последние подразделяют на различные типы (рис. 2). В настоящее время наибольшее распространение получили электрохимические ХС, и прежде всего амперометрические и потенциометрические, хотя наблюдается неослабный интерес исследователей и разработчиков к другим типам ХС, в том числе и оптическим. В электрохимических сенсорах (ЭХС) определяемый компонент реагирует с чувствительным слоем непосредственно на электроде или в объеме слоя раствора около электрода. Например, для определения концентрации CO2 в воздухе используют кондуктометрические ХС. Их действие основано на измерении электропроводности водного раствора углекислоты, в котором, как правило, в результате ее диссоциации образуются ионы H+ и в количествах, зависящих от парциального давления CO2 в воздухе. Различие в электропроводности между холостым раствором (без CO2) и анализируемым фиксируется как аналитический сигнал. Селективность амперометрического сенсора определяется природой материала электрода, точнее, его поверхности, а следовательно, и величиной потенциала, при котором происходят электрохимические реакции с участием анализируемого компонента.

К сожалению, не все вещества электрохимически активны в доступной области потенциалов. Кроме того, многие вещества реагируют на электродах при крайне отрицательных или положительных потенциалах. При этом аналитический сигнал может быть искажен или плохо воспроизводим. Для уменьшения влияния этих факторов и повышения селективности отклика поверхность ХС модифицируют с помощью специальных соединений, которые осуществляют перенос электронов между электродом и определяемым компонентом при меньших потенциалах. Операция закрепления модификатора-переносчика на поверхности химического сенсора называется иммобилизацией. В ходе иммобилизации с помощью специальных реагентов модификатор либо вводят в пленку электропроводящего полимера, либо ковалентно, то есть с помощью химических связей, "пришивают" к собственно электроду-трансдьюсеру, либо удерживают на его поверхности за счет сил адсорбции. При этом модификатор перестает быть подвижным, не вымывается анализируемым раствором и может работать в потоке жидкости. Модификация электродов для сенсоров удлиняет срок их службы. Способы модификации электродов химическими реагентами для создания ХС подобны тем, которые используют в конструкциях биосенсоров (см.: Будников Г.К. Биосенсоры как новый тип аналитических устройств // Соросовский Образовательный Журнал. 1996. № 12).

Примером использования ХС на основе модифицированного электрода может служить задача определения диоксида азота NO2 в воздухе, то есть в присутствии O2 . На обычных электродах обе молекулы этих газов восстанавливаются при близких потенциалах - их совместное присутствие мешает раздельному определению. На модифицированном фталоцианиновым комплексом кобальта электроде восстановление NO2 происходит при невысоких потенциалах, при которых кислород "молчит". Генерируемый в ходе электродной реакции ток является аналитическим сигналом, который пропорционален концентрации NO2 в воздухе.

Разработаны конструкции амперометрических ХС для анализа газов, в которых исключено использование проводящих ток растворов электролитов. В них применяются так называемые твердые электролиты, представляющие собой твердые растворы оксидов некоторых металлов. Потенциометрические ХС основаны на так называемых ионоселективных электродах, дающих селективный отклик на присутствие определяемых ионов или молекул веществ в растворах. Аналитическим сигналом в них является потенциал. Эти ХС функционируют обратимо, и при измерении потенциала на электроде не нарушается электрохимическое равновесие электрод (ХС) - раствор, чего нельзя сказать об амперометрических ХС, отклик которых определяется электролизом, то есть потреблением вещества. Однако расход определяемого вещества за время проведения анализа (так называемого формирования отклика) настолько ничтожен, что не вызывает изменений концентрации определяемого компонента при повторных измерениях. Чувствительность отклика потенциометрических ХС, как правило, ниже амперометрических.

Среди ЭХС получили распространение миниатюрные устройства, основанные на полевых транзисторах. В них металлический контакт затвора транзистора заменен химически чувствительным слоем и электродом сравнения. В этом случае затвор представляет собой металлический слой, покрытый чувствительным материалом. Взаимодействие определяемого компонента с материалом затвора вызывает изменение электрического поля в области затвора и, следовательно, порогового потенциала и тока в транзисторе, что и обусловливает аналитический сигнал. Эти устройства чувствительны к некоторым газам, например: H2 , NH3 , CH4 , H2S, с пределом обнаружения до 10- 4-10- 5 %. Из последних достижений в конструировании ЭХС можно отметить создание с использованием планарной технологии микросенсорных батарей на основе принципа ионоселективного электрода для определения концентрации ионов водорода и калия в кровотоке работающего сердца. Такие устройства могут найти применение в медицине, в частности при хирургическом вмешательстве в области миокарда.

Оптические ХС работают на принципах поглощения света, или отражения первичного светового потока, или возникающей люминесценции. Эти сенсоры выгодно отличаются от ЭХС тем, что нечувствительны к электромагнитным и радиационным полям и способны передавать аналитический сигнал без искажения на большие расстояния. Кроме того, они имеют невысокую стоимость по сравнению с ЭХС и могут конкурировать с последними, особенно в случаях, когда применение ЭХС неэффективно. Из оптических ХС перспективны сенсоры на основе волоконной оптики.

В волоконно-оптических сенсорах (ВОС) на торце световода закрепляется (иммобилизуется на каком-нибудь носителе по одному из способов, рассмотренному выше) реагентсодержащая фаза (РСФ). При описании таких устройств иногда используют термин "оптрод", являющийся комбинацией слов "оптика" и "электрод". Этим подчеркивается, что ВОС по своему назначению близок к электродам, в том числе и к тем, на основе которых функционируют ЭХС. Однако по природе сигнала и механизму отклика они совершенно отличны. Характеристика материала световода определяет оптический диапазон и соответственно аналитические возможности всего устройства. Если оптическое волокно изготовлено из кварца, то такой оптрод работает в широкой области спектра, включая ультрафиолетовую его часть. Для стекловолокна область длин волн охватывает лишь видимую область спектра. Если оптоволокно изготовлено из полимерного материала (такие устройства имеют невысокую стоимость), то диапазон длин волн, в которой работает ВОС, находится за пределами > 450 нм.

Оптосенсоры могут быть обратимыми и необратимыми. Сенсор обратим, если РСФ не разрушается при ее взаимодействии с определяемым веществом. Если часть реагента потребляется в ходе определения, сенсор работает необратимо. На рис. 3 приведена схема формирования отклика обратимого ВОС для определения pH среды, основанного на поглощении света. Устройство такого сенсора является достаточно простым: два пластиковых волокна вмонтированы в целлюлозную трубочку, содержащую краситель фиолетовый красный, иммобилизованный с помощью ковалентного связывания на полиакриламидных микрошариках. Кроме этих микрошариков внутрь трубочки помещены такого же размера шарики из полистирола для лучшего рассеяния света. Через одно волокно свет от вольфрамового источника излучения входит, а через другое выходит. Интенсивность выходящего потока света измеряется детектором, настроенным на соответствующую область длин волн. Пробка на торце трубочки удерживает РСФ механически и препятствует ее взаимодействию с определяемым компонентом в торцевой части. Подобный оптрод может быть использован и для определения концентрации O2 . В этом случае сигнал связан с тушением флуоресценции реагента при взаимодействии с кислородом. Такого типа оптроды могут быть использованы и для определения pH в живом организме.

Необратимые оптроды из-за расходования РСФ имеют ограниченный срок службы. Однако его можно продлить заменой РСФ на новую фазу. Стабильный сигнал от этих ВОС может быть получен лишь в условиях стационарного массопереноса определяемого компонента в зону его взаимодействия с РСФ. Любая помеха, нарушающая массоперенос, дает ошибку в показаниях ВОС. Обратимые и необратимые ВОС отличаются друг от друга так же, как потенциометрические ХС от амперометрических. Для последних условия массопереноса в зону реакции с чувствительным слоем определяют стабильность отклика. На рис. 4 показана схема работы необратимого оптрода на кислород. Определяемый компонент диффундирует через селективную мембрану с соответствующим размером пор в полость, содержащую иммобилизованный флуоресцирующий краситель. Его свечение гасится в присутствии O2 пропорционально парциальному давлению кислорода. Степень гашения фиксируется соответствующим устройством. Если резервуар с РСФ достаточно велик, то потребление реагента незначительно и сенсорное устройство может служить долго.

Из других типов ХС следует упомянуть электрические (ЭС) и сенсоры, основанные на принципах пьезоэффекта. При конструировании ЭС на поверхность преобразователя-полупроводника наносится адсорбционный слой специального материала, дающий отклик на присутствие определяемого компонента. Для изготовления полупроводниковой части этих ЭС используют различные оксиды металлов (SnO2 , In2O3 , Nb2O5 в ЭС на оксид углерода, аммиак). Принцип действия таких ХС основан на изменении их электрической проводимости в присутствии молекул определяемого газа. В воздухе на нагретой поверхности оксидного полупроводникового материала происходит хемосорбция молекул кислорода. При этом образуются отрицательно заряженные ионы O2 с локализацией на них электронов из зоны проводимости полупроводника. Предполагается, что электропроводность полупроводникового слоя в воздухе определяется степенью заполнения поверхности хемосорбированным кислородом. В присутствии определяемого газа на поверхности полупроводника происходит окисление молекул этого газа. При этом степень заполнения поверхности молекулами кислорода изменяется пропорционально концентрации определяемого газа. Введением в композицию металлоксидных сенсоров легирующих добавок добиваются высокой селективности отклика. Например, легирование оксида олова платиновой или палладиевой чернью заметно повышает чувствительность сенсора к парам этанола. Эти сенсоры могут быть изготовлены по технологии микросхем, когда чувствительный слой формируется на одном кристалле вместе с электрической цепью усилителя и детектора, что позволяет обрабатывать аналитический сигнал сенсора непосредственно в месте его возникновения. Существуют подобные ЭС на O2 , NOх , H2S, CO, H2 , углеводороды, позволяющие определять их содержание на уровне 10- 5 %.

Использование принципа пьезоэффекта для формирования сигнала сенсора можно продемонстрировать на примере ХС на пары ртути. Известно, что между изменением частоты колебаний кварцевого пьезорезонатора и массой адсорбированного на его поверхности вещества существует линейная зависимость:

dF = - 2,3 " 106F 2dm / S,


где F - резонансная частота колебаний пьезоэлемента, МГц ;
S - площадь электрода пьезоэлемента, см2;
dm - масса адсорбированного на поверхности электрода вещества, г.

Если пластину кварца покрыть тончайшим слоем золота, которое легко образует амальгаму под воздействием паров ртути, то при измерении резонансной частоты такого устройства можно определить массу ртути на пластинах, а следовательно, и концентрацию ее паров. В случае возникновения необходимости определять другие компоненты в газовой фазе используют соответствующие химические реагенты, дающие селективный отклик на поверхности резонатора в присутствии этих веществ. Независимо от типа сенсоров к ним предъявляют высокие требования. Они должны обладать высокими селективностью и чувствительностью определения. Так, нижняя граница определяемых содержаний с использованием ЭС лежит в пределах 10- 4-10- 6 %, а в отдельных случаях - еще ниже.

Заключение

Химическое распознавание определяемого вещества с помощью соответствующих сенсорных устройств можно рассматривать как общую проблему, в которой биосенсоры представляют собой хотя и новый (в чувствительном слое используется биологический материал), но все же частный случай. Биосенсоры же как особые устройства для решения задач охраны окружающей среды и здоровья человека уже были рассмотрены ранее (см.: Будников Г.К. Биосенсоры как новый тип аналитический устройств // Соросовский Образовательный Журнал. 1996. № 12). Химические сенсоры позволяют решать большее число аналитических задач.

Последние же успехи в области создания новых сенсоров, как химических, так и биологических, связаны с созданием так называемых одноразовых электродов. Как и одноразовый медицинский инструментарий, после употребления их выбрасывают или утилизуют. Стоимость таких ХС невысока, поскольку они могут быть изготовлены по планарной технологии в большом количестве. Примером могут служить ЭХС, напечатанные принтером. Так, с использованием программ машинной графики можно создать матрицу документа, представляющего собой чертеж ЭХС, а затем напечатать на листе формата A4 несколько сот таких сенсоров (так называемые screen-printed электроды). Для реализации этой технологии требуются совсем незначительные изменения в технологии периферийных устройств ПК: как правило, ограничиваются изменением типа расходных материалов, а именно применяют углеродсодержащие чернила и носитель на керамической или пластиковой основе, хотя возможно и использование особой бумаги. Состав чернил полностью определяет свойства, то есть характер отклика screen-printed электрода. На обратимость реакций на таких электродах и величину сигнала влияют модификаторы, вносимые в состав чернил. Так же, как и в случаях, описанных выше, возможно изменение электрокаталитических свойств при модификации этих ЭХС различными диспергированными химическими соединениями. Число исследований в областях создания новых сенсоров и сенсорных методик анализа стремительно растет. Сенсоры являются мощным средством не только аналитической химии, но и диагностики в самом широком смысле этого слова - в технологии, медицине, экологии.


Реклама


Реклама


Реклама

Реклама


Яндекс цитирования Яндекс.Метрика Яндекс.Метрика
© 2006-2013 Kipinfo.ru
При использовании информации ссылка на сайт “Kipinfo” обязательна.
Контактная информация Размещение рекламы
16+