Группа проектов Кипинфо
Реклама

Реклама

Осциллографы. Десять условий, которые необходимо учесть при принятии решения о приобретении осциллографа

К списку статей

(по материалам ведущих мировых производителей этого вида продукции)


Содержание:
  1. Какая полоса частот вам необходима?
  2. Сколько каналов вам требуется?
  3. Каковы должны быть ваши требования по частоте дискретизации?
  4. Какой объем памяти осциллографа вам необходим?
  5. Каковы должны быть ваши требования к характеристикам дисплея осциллографа?
  6. Какие функции захвата сигналов необходимы для решения ваших задач?
  7. Какие применять пробники?
  8. Какие функции документирования и связи осциллографа с периферическими устройствами вам необходимы?
  9. Каким образом вы собираетесь анализировать формы сигналов?
  10. И последнее, но очень важное: попробуйте прибор в действии, прежде чем принять решение относительно его приобретения;

Введение:

Вы каждый день снимаете показания со своего осциллографа веря в их достоверность, таким образом, правильный выбор прибора, который бы полностью отвечал стоящим перед вами задачам – чрезвычайно важное дело. Сравнение спецификаций и технических характеристик осциллографов от различных производителей – дело неблагодарное, к тому же отнимающее массу времени. Концепция, изложенная в настоящей статье, имеет целью облегчить и ускорить процедуру подбора необходимого прибора и избежать при этом множества подводных камней. Не имеет значения, кто является производителем осциллографа который вы намереваетесь приобрести – тщательно проанализируйте и сопоставьте под свои нужды все те 10 пунктов, изложенных ниже, это позволит вам объективно оценить функциональность приобретаемой продукции.

Коль-скоро вы намереваетесь приобрести осциллограф, то, вероятно, у вас имеется для этого определённый бюджет. Цена за прибор будет зависеть от множества факторов, таких как полоса частот, частота дискретизации, количество каналов и объем памяти. Если вы подбираете осциллограф только базируясь на его стоимости, то вы не получите от него требуемой функциональности. Вместо этого, в первую очередь поставьте во главу угла принцип необходимости решения стоящих перед вам задач. Если имеющегося у вас бюджета явно не хватает, вы можете рассмотреть варианты аренды осциллографа, либо приобретения «восстановленного» оборудования. (К примеру: компания Tektronix предоставляет возможность приобретения такого оборудования со кидкой до 20%)

1 . Какая полоса частот вам необходима?

Для того чтобы убедиться, что ваш осциллограф имеет достаточную под ваши задачи полосу частот, вы должны учитывать частоты сигналов, которые вы хотите изучать с помощью приобретаемого вами осциллографа.

Полоса частот – наиболее важная характеристика прибора, поскольку именно она определяет диапазон сигналов, которые вы намереваетесь отображать на экране осциллографа и, в большой степени, стоимость самого осциллографа. При принятии решения относительно полосы частот вам необходимо установить баланс между существующими бюджетными ограничениями, ожиданиями от прибора и планируемой продолжительностью его эксплуатации в лаборатории.

В современных цифровых системах синхроимпульс представляет собой самый большой по значению высокочастотный сигнал, который осциллограф должен отобразить на дисплее. Приобретаемый вами осциллограф должен иметь полосу частот, по меньшей мере, в три раза превосходящую эту величину, чтобы форма тестируемого сигнала имела на экране прибора надлежащий вид.

Другая характеристика сигналов тестируемой вами системы определяющая требования по полосе частот приобретаемого осциллографа – это время нарастания фронта импульса. По всей вероятности, вы не будете иметь возможность рассматривать лишь синусоиды, как говорится, в чистом виде, очень часто исследуемые сигналы будут содержать множество гармоник на частотах отличающихся от фундаментальных значений частот тестируемого сигнала. Например, если вы рассматриваете прямоугольный сигнал, то он на самом деле содержит частоты, по меньшей мере, в 10 раз превышающие базовую частоту исследуемого сигнала. Если вы не будете иметь под рукой осциллограф с надлежащим значением полосы частот, то при тестировании таких сигналов, вы увидите на экране их закруглённые углы вместо чётких и ясных краёв, характеризующих высокую скорость нарастания фронта импульса – то, что вы, собственно и ожидаете увидеть. Совершенно очевидно, что такое отображение сигналов в целом негативно влияет на точность выполняемых измерений.

К счастью у нас имеется несколько очень простых формул, которые помогут вам определить необходимое значение полосы частот для вашего осциллографа на основании характеристик сигналов, что вы собираетесь тестировать:

  1. Полоса частот сигнала = 0.5/скорость нарастания фронта импульса;
  2. Полоса частот осциллографа = 3 Х полоса частот тестируемого сигнала;
  3. Минимальная частота дискретизации осциллографа в реальном времени = 4 Х полоса частот осциллографа;

Теперь, когда вы, определили правильное значение полосы частот для приобретаемого вами осциллографа, вам необходимо принять во внимание частоту дискретизации по каждому каналу которые будут задействованы одновременно. Как приводится в формуле №3 (см. выше), по каждому каналу вам необходимо иметь частоту дискретизации в четыре раза превышающую полосу частот осциллографа, чтобы каждый канал был способен поддерживать заявленную полосу частот осциллографа. Мы это подробно обсудим немного ниже.

50МГц сигнал прямоугольной формы

2 . Сколько каналов вам требуется?

На первый взгляд вопрос о том, какое количество каналов требуется для приобретаемого осциллографа – достаточно прост. Кроме того, все осциллографы поставляются либо с 2-мя, либо 4-мя каналами. Тем не менее, цифровая составляющая присутствует всюду в современных проектах, 2-х и 4-х канальные осциллографы далеко не всегда соответствуют требованию по кол-ву имеющихся у них каналов, необходимых для захвата того или иного события на цифровой схеме и анализа конкретных сигналов, представляющих для разработчиков интерес. Если вы хоть раз оказывались в подобной ситуации, то вам легко понять то разочарование, постигающее проектантов, когда им приходится либо задействовать внешние приборы с целью захвата важных событий, либо писать специальные программные пакеты - и всё для того, чтобы иметь возможность анализировать специфическое поведение цифровой схемы.

Для современного мира, который всё более и более становится цифровым, новое поколение осциллографов легко интегрируется для совмесной работы с логическими анализаторами, при этом реализуется измерительная система, которая позволяет на одном дисплее, с высочайшим временным разрешением анализировать логические сигналы, при этом анализировать «аналоговую» форму исследуемых сигналов. В зависимости от конфигурации доступно анализу от 32-х до 136 логических сигналов, при этом сигналы 2-х или 4-х каналов (в зависимости от модели осциллографа Tektronix) могут дополнительно предсталенны времекоррелируемыми осциллограммами для более полного анализа проблем высокоскоростных цифровых линий.

Пример отображения на дисплее

3.  Каковы должны быть ваши требования по частоте дискретизации?

Как мы уже ранее упоминали, частота дискретизации – очень важный фактор при оценке функциональности приобретаемого осциллографа. Почему мы обращаем на это такое пристальное внимание? Большинство осциллографов при анализе сигналов задействуют технологию «наложения», когда частота дискретизации в целом увеличивается при одновременном задействовании АЦП от двух или более каналов для достижения максимального значения лишь на каком-либо одном из каналов, например, 4-х канального осциллографа. Как правило, многие производители осциллографов в спецификациях на производимую ими продукцию указывают только эту суммарную (максимальную) величину и умалчивают, что эта величина – всего лишь для одного канала! Если вы заинтересованы в приобретении 4-х канального осциллографа, то вы рассчитываете на то, что все 4 канала будут иметь заявленную частоту дискретизации, а не всего лишь один.

Вспомним вышеприведённые формулы, представленные в разделе 2 настоящей статьи, где говорится, что частота дискретизации осциллографа должна быть как минимум в 4 раза, больше значения полосы частот. 4-х кратный коэффициент умножения должен применяться, когда осциллограф задействует формат цифровой реконструкции, такой как интерполяцию sin(x)/x. В случае, когда технология цифровой реконструкции не задействуется, то коэффициент умножения должен быть 10.

(Примечание: Во всех осциллографах Tektronix применяется аппаратно реализованная интерполяция sin(x)/x).

Давайте рассмотрим пример с 500МГц осциллографом, который применяет интерполяцию sin(x)/x. Для этого осциллографа минимальная частота дискретизации на канал для поддержания полосы частот в 500МГц на каждом канале должна составлять 4 Х (500МГц), или 2GSa/сек на каждый канал! (К примеру: TDS3054B имеет независимые АЦП для каждого канала обеспечивая 5GS/s на каждый канал, гарантируя тем самым значительный запас по частоте выборки.) Но некоторые производители 500МГц осциллографов, рекламируя свою продукцию на рынке, заявляют о том, что их осциллографы используют дискретизацию 2GSa/сек, но при этом «забывают» уточнить, что эта величина имеет место лишь для одного канала. Реальная же частота дискретизации таких осциллографов (например 4-х канальных) составляет только 1,0 - 0,5 GS/s на канал – что явно недостаточно для поддержки частоты 500МГц на даже на двух каналах.

Другой способ определить требуемую вам частоту дискретизации – это определить разрешение, которое вы хотели бы иметь между точками захвата сигнала. По сути, частота дискретизации – обратная величина значению разрешения. Скажем, вы заинтересованы в 1ns разрешении между точками. Частота дискретизации, которая способна обеспечить такое разрешение есть 1/(1ns) = 1GSa/сек.

В заключение этого раздела совет: при приобретении осциллографа убедитесь, что прибор имеет достаточную частоту дискретизации на каждый канал и эта величина будет сохраняться при задействовании всех каналов одновременно, таким образом, каждый канал будет способен поддерживать заявленную в спецификациях на осциллограф полосу частот.

4.  Какой объем памяти вам необходим?

Как вы уже убедились, полоса частот и частота дискретизации тесно взаимосвязаны между собой. Требуемый объем памяти зависит от необходимой частоты дискретизации. Аналого-цифровой преобразователь оцифровывает сигналы, поступающие на вход прибора, и полученные данные сохраняются в высокоскоростной памяти осциллографа.

Важнейшим фактором, влияющим на принятие решения о выборе осциллографа, является понимание вами того, как та или иная модель осциллографа, что вы рассматриваете, реально использует сохранённую им информацию. Технология сохранения данных позволяет вам выполнять сложные задачи, такие как захват точек данных, последующее их масштабирование для получения более подробной информации, либо выполнения математических функций при обработке данных и их анализ в автономном режиме.

Большинство специалистов полагает, что максимальное значение частоты выборки осциллографа находится во всей плоскости развёртки. Это было бы очень хорошо, но при этом от прибора потребовалась бы такая огромная память, что вряд ли кто смог бы когда-либо позволить себе такую дорогую инвестицию в приобретаемое оборудование. Поскольку глубина памяти осциллографов ограничена, то соответственно возникает необходимость и в ограничении частоты выборки, коль-скоро современные генераторы развёртки проектируются с всё более и более широкими диапазонами. Чем глубже память осциллографа, тем больше времени выделяется на захват точек данных при максимальном значении частоты дискретизации. В настоящий момент на рынке достаточно часто встречаются модели осциллографов с частотой дискретизации в несколько сотен мегавыборок в секунду и невысокой ёмкостью памяти. Такой осциллограф просто вынужден снизить своё значение частоты выборки до К/В (киловыборок) в секунду когда генератор развёртки выставлен на величину, к примеру, 2 ms/деление и даже меньше. Вам необходимо проверить заинтересовавшую вас модель осциллографа на предмет зависимости значения частоты выборки от параметров генератора развёртки. Модель осциллографа, упомянутая выше, в реальности будет иметь полосу частот лишь в несколько КГц при работе на скоростях развёртки требуемых для воспроизведения на экране осциллографа полного цикла работоспособности тестируемой системы.

Необходимый объем памяти зависит от требуемого времени непрерывного анализа, а также от величины частоты дискретизации. Если вы заинтересованы просматривать захваченные сигналы длительные периоды времени с большим разрешением между точками, то вам требуется прибор с большим объемом памяти. Ниже приведена простая формула, которая прояснит вопрос о величине памяти, что требуется в каждом конкретном случае, когда у нас принимаются во внимание два параметра: временной интервал и частота дискретизации:

Объем памяти = Частота дискретизации Х время прохождения сигнала по экрану осциллографа

Обеспечение требуемой величины частоты дискретизации по всей временной плоскости осциллографа защитит вас от искажённого представления тестируемого сигнала на экране прибора и обеспечит значительно более подробной информацией о форме импульсов при их анализе в различных режимах: масштабирование, разложение на составляющие и т.д.

Осциллографы с традиционной архитектурой памяти (цифровые запоминающие осциллографы) при анализе сигналов используют последовательную структуру обработки, что не позволяет обеспечить высокого быстродействия в захвате формы сигнала доступного осциллографам реализующих параллельную архитектуру обработки. Именно параллельная архитектура системы захвата и обработки данных, реализуемая технологией DPO в цифровых люминесцентных осциллографах Tektronix позволила анализировать недоступные к захвату артефакты исследуемого сигнала.

Примечание:

Для исследования сложных комплексных сигналов компанией Tektronix была разработана технология цифрового фосфора представленная моделями осциллографов серий TDS3000B/TDS5000B/TDS7000B.

Скорость захвата формы сигнала цифровыми люминесцентными осциллографами составляет более 450 тысяч форм сигналов в секунду, что на несколько порядков выше чем скорость захвата самого быстрового цифрового запоминающего осциллографа.

В таких осциллографах память на канал достигает до 8М. При этом в спецификациях на осциллографы Tektronix всегда указывает длину памяти на 1/2/4 канала соответственно. Опционное расширение памяти – до 16М.

5 . Каковы должны быть ваши требования к характеристикам дисплея осциллографа?

Если вернуться во времена широкого использования аналоговых осциллографов, то качество отображаемого на экране сигнала определялось характеристиками электронно-лучевой трубки (ЭЛТ) прибора. В современном цифровом мире функциональность дисплея осциллографа по-большей части зависит от алгоритмов обработки поступающей информации о тестируемом сигнале, а не является физическими характеристиками ЖКИ (жидко кристаллического индикатора) прибора. Некоторые производители осциллографов разработали специальные режимы для дисплеев своих осциллографов в попытке преодолеть некоторые различия между ЭЛТ традиционных аналоговых осциллографов и ЖКИ цифровых. Связи с этим хотелось бы отметить уникальную технологию отображения сигналов, применяемую на осциллографах Tektronix серий TDS3000B/5000B/7000B. При данной технологии совмещаются достоинства ЭЛТ и ЖКИ посредством встроенного для каждого канала процессора форм сигналов DPX™, устраняющего неизбежную задержку вывода информации на экран осциллографа за счёт работы АЦП – недостаток, присущий всем цифровым запоминающим осциллографам. Информативность осциллограмм цифровых люминесцентных осциллографов благодаря трехмерному отображению сигналов значительно выше осциллограмм цифровых запоминающих осциллографов.

Современные цифровые осциллографы можно разделить на две базовые категории: «наблюдающие» формы сигналов и их анализирующие. Те приборы, что «наблюдают» обычно используются для решения задач тестирования и отладки неисправностей. В этих случаях вся информация, что вам нужна, может быть представлена лишь на картинке дисплея. Применение дополнительных функций анализа и документирования результатов измерения, использование специализированных математических пакетов ПО, а также функций расширенной обработки поступающих данных, все это выводит инженера на качественно новый уровень разработки проекта.

6 . Какие функции захвата сигналов необходимы для решения Ваших задач?

Большинство осциллографов общего назначения, что приобретаются инженерами, имеют функцию синхронизации только по уровню. В ряде случаев ее достаточно. Но если речь идет о анализе цифровых сигналов, комплексных сигналов с цифровой модуляцией такие осциллографы малоэффективны, поэтому все осциллографы Tektronix начиная с младших моделей реализуют несколько сложных типов захвата сигнала, предназначенных для захвата цифровых потоков, синхронизации непериодических цифровых посылок, видео сигналов с выделением требуемых полей/строк, более того реализуются сложные алгоритмы синхронизации с использованием логических условий между несколькими триггер-событиями.

Для разработчиков сложного телекоммуникационного оборудования некоторые модели осциллографов имеют в качестве стандартной функции захват событий на протоколах SPI, CAN, USB, I2C и LIN. Очень важно отметить, что наличие расширенных возможностей функций захвата экономит разработчикам и инженерам массу времени на отладку между собой аппаратно-программных средств новых моделей цифровых систем.

Что если вам требуется захватывать редкие события? Запуск на глитчи позволяет вам захватывать их позитивную, либо негативную составляющую, или же импульсы превышающие свою ширину, либо наоборот – с шириной не соответствующей установленному значению. Наличие таких функций наиболее эффективно, когда разработчики осуществляют отладку цифровых систем и поиск в них неисправностей. Например, вы можете захватить какую либо неисправность на схеме, а затем вернуться назад во времени и просмотреть историю и причину её (неисправности) возникновения (при этом задействую функцию задержки, либо клавишу смещения изображения в горизонтальной плоскости).

Многие современные осциллографы способны задействовать функцию запуска на событие при анализе ТВ и видео изображений. Задействуя такую функцию вы можете захватывать интересующие вас параметры на специфических полях и линиях, которые представляют интерес.

7 . Какие применять пробники?

Как правило, очень многое начинает меняться на частоте 1ГГц и выше. Поскольку пассивные пробники обычно ограничены 600МГц, то анализ сигналов с частотой, лежащей за этими пределами, может явиться проблематичным. При иерархии «полоса частот тестируемой системы – диапазон частот комбинации осциллограф/пробник» возникает ограничение по наименьшему значению из составляющих этой иерархии. Рассмотрим, к примеру, 1 ГГц осциллограф с 500МГц пассивными пробниками. Полоса частот всей системы «осциллограф/пробники» составляет 500МГц. Нет никакого смысла приобретать 1ГГц осциллограф, если частота сигналов, которые вы в состоянии измерять, составляет всего 500МГц. И всё это – из-за вашего пробника!

Необходимо всегда учитывать, что как только вы состыковываете, пробник с тестируемой цепью, этот пробник сразу же становится частью единой с этой цепью системой. По сути, пробник – это линия передачи данных на очень короткое расстояние. Эта линия представляет собой резонансный L-C колебательный контур и при ? частоты волны на передающей линии, сопротивление колебательного контура будет близко к значению «0» что, соответственно, и явится нагрузкой на тестируемый вами объект. Вы легко можете увидеть нагрузку резонансного L-C контура при медленных значениях нарастания фронта импульса и переходных процессах в виде затухающих колебаний на сигнал.

игнал с временем нарастания фронта 250

Активные пробники не только дают возможность измерять значительно более высокие по частоте сигналы чем пассивные, но также они способны нейтрализовывать целый ряд негативных явлений, возникающих в трансмиссионной линии при подстыковке пробника к тестируемой цепи. Компании Tektronix™ удалось добиться минимизации отрицательных воздействий на анализируемые сигналы, - явления, которое неизбежно приводило к их искажению при представлении на экране осциллографа. Для этого в комплект поставки с активными пробниками предлагается целый ряд дополнительных аксессуаров и принадлежностей. Эти «амортизационные» принадлежности предотвращают сползание сопротивления резонансных L-C колебательных контуров к значениям близким к нулю, тем самым, устраняя возможность появления переходных процессов в виде затухающих колебаний и искажений сигналов, вызванных нагрузкой на получаемые данные в ходе процесса тестирования. Все это гарантирует стабильное и точное получение информации по цепи: пробник осциллографа – тестируемый сигнал.

Теперь, когда можно считать, что проблемы, вызванные искажением получаемых на осциллограф данных решены, следующим шагом при исследовании высокоскоростных сигналов должно быть обеспечение того, что ваш пробник на самом деле «работает» в заявленном диапазоне полосы частот, даже когда с ним используются насадочные головки. Практически вся номенклатура активных пробников Tektronix оптимизируют свою величину полосы частот посредством использования контролируемой шины передачи данных между усилителем пробника и его окончанием. Задействуя всего один усилитель, вы сможете использовать несколько сменных аксессуаров для удобства подсоединения к тестируемой линии, при этом никак не влияя на заявленную в спецификациях пробника полосу пропускания. Следует отметить, что конструктивно усилитель пробника отделён от его кончика через шину передачи данных, тем самым форма пробника, не смотря на его сложность конструкции, допускает возможность лёгкого подхода к труднодоступным участкам современных микросхем.

Очень важным для вас должно явиться осознание того, что в целом, величина частоты пробника будет варьироваться при использовании с ним различных конструкций насадочных головок и аксессуаров. Некоторые аксессуары могут негативно влиять на общую функциональность пробника и, конечно же, вы явно не желаете оказаться в ситуации, когда, потратив несколько тысяч долларов на приобретение высокочастотного пробника, вы в итоге получаете прибор с неудовлетворительной функциональностью, хотя и вами же заказанной конфигурацией.

8 . Какие функции документирования и связи осциллографа с периферическими устройствами вам необходимы

Большинство современных цифровых осциллографов имеют возможности подключения к периферийным устройствам, такие же, как и персональные компьютеры – включают интерфейсы GPIB, RS-232, LAN, USB. В настоящий момент с осциллографа значительно легче послать на принтер картинку для её распечатывания, либо передать полученные данные на ПК или же сервер, чем это можно было сделать в прошлом. Часто ли вы переносите полученную с осциллографа информацию на ПК? Тогда для приобретаемой вами модели прибора необходимо иметь как минимум одну из перечисленных выше опций. Встроенный в осциллограф дисковод или драйвер CD-ROM помогут переносить данные на периферийные устройства, хотя это и потребует от пользователя несколько больших усилий, чем отправка файлов через порт RS-232 или по локальной сети (LAN). Для доступных и недорогих моделей осциллографов, которые не имеют столь «продвинутых» функций состыковки с периферийными приборами как-то LAN, производители этого вида продукции часто предлагают использовать программные пакеты, позволяющие пользователям легко переносить изображения форм сигналов и полученные данные на ПК через разъёмы GPIB и RS-232. Если же ваш персональный компьютер не имеет карты GPIB или вы хотите задействовать более простую функцию переноса информации с осциллографа на ваш ПК, то вы можете рассмотреть вариант использования конвертера GPIB – USB. Достаточно много моделей осциллографов выпускаются с жёсткими дисками очень большого объёма памяти – функция, которую вы можете использовать при сохранении получаемых данных.

Определитесь заранее, какой объём возможностей от осциллографа вам потребуется, что касается его совместимости с периферийными устройствами. Если вы планируете использовать приобретаемый прибор как часть автоматической тестовой системы, то убедитесь, что заинтересовавшая вас модель осциллографа имеет необходимый набор программных пакетов и драйверов для соответствия поставленным целям.

9.  Каким образом вы собираетесь анализировать формы сигналов?

Возможность осуществлять автоматические измерения и наличие встроенных функций анализа получаемой информации может значительно сократить время на выполнение задач тестирования. Цифровые осциллографы практически всегда выпускаются с целым набором измерительных функций и опций анализа информации – то, что отсутствует у их аналоговых собратьев. Например, математические функции включают в себя сложение, вычитание, умножение, деление, интегрирование и дифференцирование. Получаемая статистика измерений (мин., макс., усреднение) способна квалифицировать степень неточности при измерениях – очень ценная возможность при получении характеристик шума и данных синхронизации. Большинство моделей цифровых осциллографов также имеют функции БПФ (Быстрое Преобразование Фурье).

Для требовательного пользователя, заинтересованного в углублённом анализе получаемых форм сигналов, производители осциллографов предоставляют больший набор функциональных возможностей выпускаемой ими продукции, как в среднем классе приборов, так и высшем. Некоторые производители включают в поставку программные пакеты, позволяющие вам адаптировать сложные измерения под стоящие перед вами задачи, а также задействовать математические функции и функции обработки полученной информации в автономном режиме непосредственно с интерфейса пользователя осциллографа. Например, компания Tektronix представляет оболочку MyScope где используя стандартные блоки анализа сигнала можно просто сформировать индивидуальные интерфейсы обработки результатов измерений.

Либо используя алгоритм интересующего вас измерительного сценария, реализовать его на языке С++ или Visual Basic и запустить полученную таким образом программу через меню графического интерфейса пользователя осциллографа (GUI). Такая функциональность устраняет необходимость переноса данных на внешний ПК, что может сэкономить значительное количество времени при выполнении задач углублённого анализа полученных данных.

Програмное обеспечение

10 . И последнее, но очень важное: попробуйте прибор в действии, прежде чем принять решение относительно его приобретения

Если вы внимательно изучили предшествующие девять условий что касается приобретения осциллографа, то, по всей вероятности, вы уже значительно сузили круг интересующих вас моделей, способных соответствовать предъявленным критериям. Теперь настало время практически опробовать модели, представляющие для вас интерес и провести сравнения, что называется, «по-жизни». Одолжите осциллографы на несколько дней от ваших потенциальных поставщиков, тем самым у вас появится возможность тщательно оценить каждую модель непосредственно в условиях вашей лаборатории. Несколько факторов, которые необходимо принять во внимание при опробовании приборов:

Простота использования: В процессе пробного использования обратите внимание на то, насколько вам легко работать с той или иной моделью осциллографов. Имеется ли у них лёгкая в использовании клавиатура, которая особенно часто задействуется, например, при настройках вертикальной чувствительности, регулирования скорости генератора развёртки, позиционирования трассировки, уровня синхронизации и захвата на событие? Какое количество клавиш вам требуется задействовать при переходе с одного режима на другой? Можете ли вы интуитивно управлять осциллографом при полной концентрации на тестируемой электронной цепи?

Способность дисплея к реагированию: Коль-скоро вы проводите сравнения между собой различных моделей осциллографов, обратите внимание на способность дисплея к реагированию каждого из них. Это – критический фактор, независимо от того, используете вы прибор для отладки неисправностей или же просто собираете большие массивы данных. Когда вы изменяете значения V/деление, время/деление, глубину памяти и позиционируете уставки, реагирует ли осциллограф быстро на ваши команды? Проведите эти же сравнения непосредственно по ходу тестирования микросхем. В этом случае, намного ли замедляется реакция прибора?

Выводы:

После того, как вы внимательно изучили всю информацию, представленную в этом Руководстве, протестировали на практике интересующие вас модели осциллографов, то, вероятно, вы уже точно знаете какая именно модель вам нужна. Если же сомнения всё-таки остаются, то необходимо обсудить альтернативные варианты со своими коллегами или же позвонить в отдел технической поддержки производителя интересующего вас осциллографа.

Примечание:

По оценкам независимых экспертов компания Tektronix (США, www.tek.com), занимает 67% сегмента мирового рынка осциллографов тем самым подтверждая свое лидирующие положение.


Оценить статью

Средняя оценка: 4.1


1

2

3

4

5

Реклама


Реклама


Реклама

Реклама


Яндекс цитирования Яндекс.Метрика Яндекс.Метрика
© 2006-2013 Kipinfo.ru
При использовании информации ссылка на сайт “Kipinfo” обязательна.
Контактная информация Размещение рекламы
16+